
Assessing the Benefits of DCT Compressive Sensing for

Computational Electromagnetics

by

Kristie D’Ambrosio

[S.B. Computer Engineering, M.I.T., 2010]

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

April 2011

©2011 Massachusetts Institute of Technology

All rights reserved.

Author__

 Department of Electrical Engineering and Computer Science

 April 28, 2011

Certified by__

Patrick H. Winston

Ford Professor of Artificial Intelligence and Computer Science

M.I.T. Thesis Supervisor

Accepted by___

 Dr. Christopher J. Terman

 Chairman, Masters of Engineering Thesis Committee

2

Assessing the Benefits of DCT Compressive Sensing for

Computational Electromagnetics

by

Kristie D’Ambrosio

Submitted to the

Department of Electrical Engineering and Computer Science

April, 2011

In Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

Computational electromagnetic problems are becoming exceedingly complex and traditional

computation methods are simply no longer good enough for our technologically advancing

world. Compressive sensing theory states that signals, such as those used in computational

electromagnetic problems have a property known as sparseness. It has been proven that through

under sampling, computation runtimes can be substantially decreased while maintaining

sufficient accuracy. Lawrence Carin and his team of researchers at Duke University developed

an in situ compressive sensing algorithm specifically tailored for computational electromagnetic

applications. This algorithm is known as the discrete cosine transform (DCT) method. Using

the DCT algorithm, I have developed a compressive sensing software implementation. Through

the course of my research I have tested both the accuracy and runtime efficiency of this software

implementation proving its potential for use within the electromagnetic modeling industry. This

implementation, once integrated with a commercial electromagnetics solver, reduced the

computation cost of a single simulation from seven days to eight hours. Compressive sensing is

highly applicable to practical applications and my research highlights both its benefits and areas

for improvement and future research.

Thesis Supervisor: Patrick Winston

Title: Ford Professor of Artificial Intelligence and Computer Science

3

Acknowledgements

I would first like to thank my thesis advisor, Professor Patrick Winston, for all his help

and support that enabled me to pursue my research unabated. Professor Winston chose to accept

me as an advisee under the knowledge that I would not be pursuing a research topic within his

expertise. I am exceedingly grateful for his decision to believe in me and my work which

ultimately made this thesis possible.

I would also like to thank my mentor, Dr. Ronald Pirich, for his guidance and endless

expert advice. For four years Ron has continually encouraged my creativity and pushed me to

achieve more than I ever believed possible. He has broadened my horizons and ultimately made

me a better engineer. I am very excited to begin my career with Ron’s team upon my graduation.

I would like to give special thanks to my family, without whom my life would hold no

meaning. My mother, Randi, and father, Michael, have sacrificed so much to ensure that I get

the best education possible. They are the greatest role models a daughter could ever ask for. My

sisters, Danielle and Marissa, have been my greatest allies during some of the most trying times

in my life. I am eternally grateful to have both of you in my life. My grandmother, Awa, always

encouraged my creative spirit and gave me the greatest gift of all, passion. I am blessed to have

been given such an incredible group of people to call my family.

Finally, I would like to thank my fiancé, Eric Correll. Without him I would not have

survived my final year of MIT. His unwavering support and love has made everything seem

possible. I am inexpressibly excited to begin the rest of our lives together.

4

Contents

1 Introduction ... 8

2 Compressive Sensing ... 10

 2.1 Compressive Sensing Theory ... 10

 2.2 Algorithmic Background .. 12

 2.3 Applications .. 14

3 Electromagnetic Modeling ... 14

3.1 Computational Electromagnetic Methods .. 15

3.2 Complexities of Electromagnetic Modeling ... 16

3.3 Electromagnetic Modeling Software: FEKO ... 17

4 DCT Algorithm .. 19

4.1 DCT Compressive Sensing Theory .. 19

4.2 Mathematical Formulation ... 21

4.3 Application in Electromagnetic Modeling ... 22

5 Fortran-Based DCT Implementation ... 23

5.1 Accuracy Testing .. 23

 5.1.1 Theoretical Accuracy .. 24

 5.1.2 Practical Accuracy .. 25

5.2 Efficiency Testing .. 27

 5.2.1 Phase1: Cylinder ... 27

 5.2.2 Phase 2: VFY218 .. 29

5.3 Analysis and Conclusions... 30

6 FEKO-DCT Integration .. 31

6.1 How FEKO Works ... 32

6.2 High-Level Implementation Description .. 34

5

6.3 In-Depth Implementation Description .. 35

6.3.1 Front-End .. 35

6.3.2 Back-End .. 38

7 Runtime Efficiency of FEKO-DCT Integration ... 39

7.1 Phase 1: Cylinder .. 40

7.2 Phase 2: VFY218 .. 41

7.3 Analysis and Conclusions... 43

8 Future Advancements in Compressive Sensing .. 45

9 Contributions .. 48

Appendix A .. 50

A.1 Runtime Data for Fortran-Based DCT Implementation 50

A.2 Runtime Data for FEKO-DCT Implementation 51

Bibliography .. 52

6

List of Figures

1 VFY218 Mesh Model .. 16

2 Haar Function... 25

3 Discrete Cosine Function ... 25

4 VFY218 RCS at 200 MHz ... 26

5 Cylinder Mesh Model .. 28

6 Fortran-Based DCT – Cylinder Runtime ... 28

7 Fortran-Based DCT – VFY218 Runtime ... 30

8 High-Level Implementation Schematic ... 34

9 Front-End Implementation Schematic ... 36

10 Back-End Implementation Schematic.. 38

11 FEKO-DCT Integration – Cylinder Runtime .. 40

12 FEKO-DCT Integration – VFY218 Runtime .. 42

7

List of Acronyms

BCS – Bayesian Compressive Sensing

CEM – Computational Electromagnetics

CS – Compressive Sensing/Compressive Sampling

DCS – Distributive and multi-sensor Compressive Sensing

DCT – Discrete Cosine Transform

EM - Electromagnetic

FEKO – Field Computation for Objects of Arbitrary Shapes

FEM – Finite Element Method

FMM – Fast Multipole Method

MBCS – Model Based Compressive Sensing

MLFMM – Multi Level Fast Multipole Method

MoM – Method of Moments

RCS – Radar Cross Section

RVM – Relevance Vector Machine

8

Chapter 1

Introduction

The design of present and future electromagnetic systems, in a complex and increasingly

electronic world, is going to depend upon the speed and efficiency of our computational systems.

One way to increase the efficiency of our computational systems is by decreasing the runtime of

signal processing computations. It has long been understood that signals possess sparseness

properties. This allowed for the development of a technique, known as compressive sensing or

sampling (CS), to emerge as an optimization method for signal processing. Many different CS

algorithms have been developed over the last two decades that highlight the benefits of

exploiting such sparseness properties.

In this thesis I document the implementation and testing of one particular compressive

sensing algorithm designed specifically for electromagnetic simulation applications. This

algorithm, known as the discrete cosine transform (DCT) method was developed by a team of

researchers at Duke University. Led by Professor Lawrence Carin, the team theoretically argued

that the DCT algorithm would provide substantial, time-reducing benefits to the field of

electromagnetic modeling. I tested that theoretical argument by implementing the DCT

algorithm and showed my implementation dramatically reduce the runtime of electromagnetic

scattering problems such as radar cross section (RCS) analyses.

In order to assess that the DCT compressive sensing algorithm is beneficial to a broad

range of electromagnetic, signal processing applications it must be tested in a comparative study.

A stand-alone implementation of the DCT compressive sensing method was tested in a

9

comparative study alongside a commercial method for computing electromagnetic simulations.

The commercial method that will be used in this study is an industry-accepted, commercial

software product known as FEKO (Field Computation for Objects of Arbitrary Shape). The

FEKO software platform has a well-optimized electromagnetic solver and currently has the

capability to run some of the fastest electromagnetic modeling simulations.

I tested an implementation of the DCT method against the industry standard to establish

that the DCT method is an accurate technique for computing scattering problems and large-scale

simulations. More importantly, I compared the runtimes of the two computation methods to

determine the efficiency benefits of the DCT method in a practical application.

Throughout the course of this study I discovered that a stand-alone DCT implementation

with a home-grown electromagnetics solver could not reduce runtime enough to successfully

compete with the optimized, commercial software. Therefore, I integrated the DCT method with

the FEKO electromagnetics solver. This integration brought together the benefits of

compressive sensing theory as well as the widely-accepted optimization benefits of the FEKO

electromagnetics software. The results of this integration implementation were drastic. My

compressive sensing software was able to reduce computation runtime from 164 hours, almost 7

days, to approximately 8 hours.

Using compressive sensing in electromagnetic modeling has yet to become mainstreamed

in industry. I showed the benefits of such theoretical integration with this thesis and prove that it

is both accurate and efficient.

10

Chapter 2

Compressive Sensing

Signal processing theory states that the rate at which signals must be sampled in order to

capture all of the information of that signal is equal to twice the Fourier bandwidth of the signal

(Nyquist rate). This sampling method produces a large amount of data with a large amount of

redundant information. However, researchers have found that many important signals have a

property called sparseness, thus allowing the number of samples required to capture all of the

signal’s information to be reduced. This approach, called compressive sensing or sampling (CS)

can be used to exploit signal sparseness and allow signals to be under sampled without the loss

of information. [3]

2.1 Compressive Sensing Theory

Compressive sensing has the ability to effectively use randomization to minimize the

redundancy inherently found in electromagnetic computation. In traditional signal sampling, the

finite bandwidth of a signal is exploited to allow all of the information of the signal to be

captured when it is sampled at even intervals. However, the goal of compressive sensing is to

reconstruct a signal accurately and efficiently from a set of few non-adaptive linear

measurements. Using linear algebra it can be shown that it is not possible to reconstruct an

arbitrary signal from an incomplete set of linear measurements. Thus, the problem must restrict

the domain in which the signal belongs. By doing so, the problem now only considers sparse

signals, those with few non-zero coordinates.

11

Not all signals are inherently sparse but many can be transformed into some basis in

which most of the transform coefficients are negligible, thus making them sparse within this

basis domain. For example, a signal’s spectrum, obtained by applying a Fourier transform, may

be sparse, in which only a few of the Fourier coefficients would be non-zero. It is now known

that many signals such as real-world images or audio signals are sparse either in this sense, or

with respect to a different basis. Sparse signals lie in a lower dimensional space, which means

that it can be represented by few linear measurements. Compressive sensing reduces the number

of sampling points which directly corresponds to the amount of data collected. In addition, CS

operates under the assumption that it is possible to directly acquire just the important information

about the signals. This means that in effect, the part of the data that would get thrown away is

never acquired. This enables the creation of net-centric and stand-alone applications with many

fewer resources.

A surprising aspect of CS is that it does not attempt to measure the dominant coefficients

of a transformed signal. Rather, weighted combinations of all wavelet coefficients are measured.

Another surprising aspect of CS is that one may expect that the aforementioned weights should

adapt to the signal under test. However, CS theory indicates that a fixed set of weights may be

used for all signals within a given class, and that the quality of the CS estimate of that signal,

based on these measurements, will not be significantly worse than the best adaptive

measurements. This property makes an implementation much simpler since weights can be

predetermined for each signal class without the need for adaptive calculations. [6]

12

 2.2 Algorithmic Background

Every compressive sensing algorithm stems from the basic theory described above. In

general terms, the algorithmic mathematical process can be described as follows: Suppose x is

an unknown vector in R. Given the context of the problem, R could be a signal or image. We

want to acquire the data contained in vector x though sampling and then reconstruct it to obtain

the complete vector. Traditionally, this should require m samples, where m adheres to the

Nyquist rate. However, suppose that it is known beforehand that x is compressible by transform

coding with a known transform. This means we are allowed to acquire data about x by

measuring n general linear functions rather than m. If the collection of linear functions is well-

chosen, and we allow for a degree of reconstruction error, the size of n can be dramatically

smaller than the size m usually considered necessary. Thus, certain natural classes of signals or

images with m data points need only non-adaptive samples for faithful

recovery, as opposed to the usual m samples.

Over the past two decades there have been many different adaptations of compressive

sensing theory. Each is different but all are perfectly acceptable methods. Described below are

three of the major variations of CS algorithms found in today’s literature. However, even within

each category, every developer has a unique version of the technique.

Distributed and Multi-Sensor Compressive Sensing (DCS) is a branch of compressive

sensing that enables new distributed coding algorithms for multi-signal ensembles. This method

exploits correlation structures within and between the signals. DCS theory rests on a new

concept called the joint sparsity of a signal ensemble. There are many algorithms for joint

recovery of multiple signals from incoherent projections which and characterize the number of

13

measurements per sensor required for accurate reconstruction. DCS is a framework for

distributed compression of sources with memory, which has remained a challenging problem for

some time. [2]

Bayesian Compressive Sensing (BCS) is a Bayesian framework for solving the inverse

problem of compressive sensing which remains extremely challenged. The basic BCS algorithm

adopts the relevance vector machine (RVM) and can marginalize the noise variance with

improved robustness. Besides providing a Bayesian solution, the Bayesian analysis of CS, more

importantly, provides a new framework that allows a user to address a variety of issues that have

not been addressed in other compressive sensing algorithms. These issues include: a stopping

criterion for determining when a sufficient number of CS measurements have been performed, as

well as adaptive design of the projection matrix and simultaneous inverse of multiple related CS

measurements. [8]

Model Based Compressive Sensing (MBCS) theory parallels the conventional theory and

provides concrete guidelines on how to create model-based recovery algorithms with provable

performance guarantees. Performance guarantees are extremely beneficial for the application of

compressive sensing in industry-quality software. A highlight of this technique is the

introduction of a new class of compressible signals and a new sufficient condition for robust

model compressible signal recovery. The reduction of the degrees of freedom of a compressible

signal by permitting only certain configurations of the large and small coefficients allows signal

models to provide two immediate benefits to CS. The first benefit is that MBCS enables a user to

reduce, in some cases significantly, the number of measurements M required to recover a signal.

The second benefit is that, during signal recovery, MBCS enables a user to better differentiate

true signal information from recovery artifacts, which leads to a more robust recovery. [1]

14

2.3 Applications

The benefit of compressive sensing is that, by processing fewer data points, the

computation time of electromagnetic simulations can be drastically reduced. Compressive

sensing or sampling has many applications with computationally intense problems. The problem

of interest for this research is electromagnetic modeling, specifically radar cross section (RCS)

analyses. Signal processing systems use first principle electromagnetic codes, such as Method

of Moments (MoM) and Fast Multipole Method (FMM), to determine solutions to computational

electromagnetic problems. The next chapter will discuss the use of first principle

electromagnetic codes and the challenges faced today for complex modeling and simulation

problems.

Chapter 3

Electromagnetic Modeling

Computational electromagnetics (CEM) or electromagnetic modeling is the process of

modeling the interaction of electromagnetic fields with physical objects and the environment. It

typically involves using computationally efficient approximations to Maxwell's equations and is

used to calculate antenna performance, electromagnetic compatibility, radar cross section and

electromagnetic wave propagation when not in free space. [13]

15

3.1 Computational Electromagnetic Methods

The method of moments (MoM) is a numerical computation method of solving linear

partial differential equations which have been formulated as integral equations. MoM is

characterized as an integral solver method because of its integral form. Conceptually, it works

by constructing a mesh over the modeled surface and calculates boundary values. By limiting

the calculation to boundary values, rather than values throughout the space, it is significantly

more efficient in terms of computational resources for problems with a small surface to volume

ratio.

Compression techniques (e.g. multipole expansions or adaptive cross

approximation/hierarchical matrices) can be used to ameliorate efficiency problems, though at

the cost of added complexity and with a success-rate that depends heavily on the nature and

geometry of the problem. Fast multipole method (FMM) is an alternative to MoM. It is an

accurate simulation technique and requires less memory and processor power than MoM. The

FMM was first introduced by Greengard and Rokhlin and is based on the multipole

expansion technique. FMM can also be used to accelerate MoM. [13]

Throughout the experiments in this thesis I focused on one problem-of-choice: radar

cross section (RCS) analyses. Radar cross sections are a commonly calculated problem for

engineers in the electromagnetic modeling industry and involve some of the most complex and

time-consuming computations. For example, Figure 1 is a model of a generic aircraft, known as

the VFY218. This model has hundreds of thousands of mesh elements for problems of relatively

low frequencies. Determining solutions to RCS problems for aircrafts, such as the VFY218 are

common practice in the aerospace industry. Because of these reasons I felt that RCS calculations

16

would best highlight the benefits of compressive sensing as well as prove that practical

applications are possible. [12]

3. 2 Complexities of Electromagnetic Modeling

Engineers in the computational electromagnetic industry face a series of complex set-

backs that make finding a solution to CEM problems extremely difficult, if not impossible. The

use of a mesh model as described above can create complex boundary conditions if not

formulated correctly. Many CEM simulations can take days to compute and if the mesh is

incomplete or has a boundary inconsistency, the problem may not be forseen until a solution is

tried and fails. A user could spend days waiting for the software platform to determine that a

solution cannot be found given the defined mesh model. Therefore, finding the RCS of complex

objects can be some of the trickiest and most time consuming simulation and modeling problems

in the field today. While more time efficient computation techniques will not improve the user’s

ability to create a complete and usable mesh model, it will allow users to determine if a problem

exists sooner.

Figure 1: VFY218 Mesh Model

17

RCS analyses at low frequencies (such as 100 MHz) do not provide as much information

about the shape of the object as an RCS computed at a high frequency (3 GHz). In order to

complete the analysis at a higher frequency, the mesh model being used for the computation

must be of a finer grain. Computers today have the capability to have terabytes of memory and

many processing cores working simultaneously. However, despite these advancements, large

and complex mesh models could have millions of elements that need to be processed. Even with

the advancements in technology, the user’s needs are growing faster than our computers can

handle. Some problems can still take a week or two to complete at such high frequencies.

CEM is an extremely complex field with many shortcomings. I have described two of

the major, time consuming problems faced in today’s industry that can be remedied by the use of

time-reducing analysis methods such as compressive sensing.

3.3 Electromagnetic Modeling Software: FEKO

FEKO is a commercial computational electromagnetics software suite that is used in a

wide range of industrial application such as antenna placement, scattering analyses, and radome

modeling. FEKO will act as the control in our accuracy and efficiency tests. I chose FEKO over

other software on the market for three main reasons. First, FEKO is an industry standard in the

CEM modeling field. It also provides the user with substantial information about its own

accuracy. This allows us to be certain that any DCT-based solution with marginal error from a

FEKO solution will be industry acceptable.

Second, FEKO has some of the most advanced Method of Moment based CEM solvers

on the market today. This is because the software platform is most tailored to integral solver

18

methods rather than FEM solvers. For scattering problems, such as radar cross section analyses,

this methodology is ideal. The speed of the FEKO solver will prove useful later on in our DCT

experimental analysis when we want to test efficiency.

FEKO offers users a wide spectrum of numerical methods and hybridizations, each

suitable for a specific range of applications. The two methods described below are integral

solver methods and are useful for solving RCS problems. Method of Moments (MoM) is the

most simplistic of all the integral solver methods. However, it is the ideal solution method for

radiation and coupling analyses and can out-perform more advanced methods with certain

applications. Multi-level Fast Multipole Method (MLFMM) is a more complex and advanced

integral solver method that is built off of the more simplistic FMM framework. It is the ideal

method for electrically large, full-wave analyses. FEKO provides several other hybrid solver

methods which I will not discuss in this this since they are not useful for our application. [11]

FEKO was the first software platform to use the MLFMM solver method which was

hailed for its time-reduction capabilities. The traditional MoM treats each of the N basis

functions in isolation, thus resulting in an N
2
 scaling of memory requirements and N

3
 in CPU.

Therefore, it is clear that processing requirements for MoM solutions scale rapidly with

increasing problem size. The MLFMM formulation's more efficient treatment of the same

problem results in Nlog(N) scaling in memory and Nlog(N)log(N) in CPU time. In real

applications this reduction in solution requirements can range to orders of magnitude. [10]

The FEKO software makes it simple for users to switch between computation methods

given the needs of the specific problem in question. This flexibility makes FEKO one of the

most time efficient software platforms for computational electromagnetics. In addition, users

19

can make many manual optimizations to the FEKO solver in order to further increase runtime

efficiency. The iterative stopping criterion, or convergence level, determines the accuracy of the

result. The default value for this condition is extremely generous and users can manually alter

the value in order to decrease runtime while still ensuring a known and acceptable accuracy for

their simulation. The FEKO software and other CEM software platforms like FEKO are

complex and advanced systems that have been proven effective and relatively efficient in

industry for years. One of the challenges of this research is to find a time saving CEM solution

that can outperform the FEKO software.

Chapter 4

DCT Algorithm

Researchers at Duke University, under the direction and supervision of Professor

Lawrence Carin, have developed a new, in situ compressive sensing theory that uses a discrete

cosine transform basis function. This theory, as described below, formed the basis of research

for this thesis. All implementations of the DCT method, as described in chapters 5 and 6, are

exact mathematical implementations of the theory presented by Carin and his team. In this way,

I ensure that the accuracy of each of my tests is supported by the theoretical accuracy of Carin’s

research as presented in his published papers.

4.1 DCT Compressive Sensing Theory

When a target is situated in the presence of a complicated background medium, the

frequency-dependent multi-static fields scattered from the target can be measured in a CS

20

manner. The CS measurements are performed by exploiting the natural wave propagation of the

incident and scattered fields. This method may be employed to reduce the number of

computations required in numerical linear scattering analyses. [5]

A given source in the presence of the background medium yields a weighted set of plane

waves traveling at different angles Φi in the presence of the target, and the induced scattered

fields propagate away from the target at multiple angles Φs , and energy from the multiple of

these scattering angles arrive at a given receiver, with the different received, Φs components

weighted by the associated characteristics of the corresponding propagation medium.

This is called in situ compressive sensing because the background medium and the

associated Green’s function are used to constitute the CS projections on the angle-dependent

target scattering response. This technique uses a discrete cosine transform rather than the wavelet

transform because it was determined that the DCT yielded better sparseness that a wavelet basis;

this is attributed to the fact that often the angle-dependent scattering fields constitute a very

smooth function, and therefore the localizing properties of wavelets are less necessary.

The interesting aspect is that, by exploiting a highly multi-path environment, the

resolution with which the fields are focused at the source may be much higher than that expected

of the same physical antenna aperture situated in vacuum. This can be referred to as super

resolution. Both time reversal and in situ compressive sensing exploit the complex propagation

medium to realized related effects. [4]

21

4.2 Mathematical Formulation

The section above describes the in situ compressive sensing theory whereas this section

will explain the mathematical foundation behind the method. All implementations of the DCT

compressive sensing method in this paper follow the prescription described below.

I begin with a common task of computing the scatter fields from the N plane-wave

incidences. In this case we will take N to equal 512. Each of the N waves has amplitude of 1 and

ranges from 0 to 180 degrees at the following angles:

Φ0 = 0, Φ1 = 180/N, Φ2 = 180*(2/N), … , ΦN-1 = 180 – 180/N

Here we model the observation of scattered waved at the receiver which is at a fixed

angle from the target. We will let un denotes that scatter field due to the n
th

 plane wave incident.

Once plane waves reach the receiver, I perform the discrete cosine transform for the scattering

fields un. In this case, n  [0, N-1] and k are the DCT coefficients according to the following

formula:



Once the DCT coefficients k are calculated we find that there are M low-frequency

components of those coefficients which are dominant or non-zero. It is important to realize that

M is much smaller than the number of initial scattered angles N. Given these M DCT

components, the scatter field un can be reconstructed very accurately later on.

22

Next we use a first principle electromagnetic code, such as the fast multipole method

(FMM) to compute the M coefficients. In this calculation only M realizations are used with the

multiple plane-wave incidences in each realization. Because this computation only requires M

realizations, the computation time can be drastically reduced.

The final step of the DCT compressive sensing method is to compute the inverse DCT to

get the scatter field due to each of the 512 plane-wave incidences with amplitude 1. [4]

4.3 Application in Electromagnetic Modeling

Linear scattering analyses, such as radar cross section (RCS) analyses result in a matrix

equation of the form Zi = v where i represents a column vector of basis-function coefficients to

be solved for, the column vector v represents the known source or excitation. Method of

moments (MoM) is an example of a numerical technique that yields a matrix equation of the

form above. These computations can become very large and unwieldy. Therefore, the principle

bottleneck is established in the form of solving the matrix equation. This is the motivation behind

using compressive sensing methods for scattering analysis problems.

In order to directly solve the ZxZ matrix with a numerical method such as MoM it would

take O(Z
2
) time. Other technique, such as MLFMM as discussed in chapter 3, can reduce

computation time to O(NlogN) or O(N). Unfortunately these can also be very time consuming

for very large values of N. Compressive sensing calculations using the DCT method were

performed with N = 16, 32, 64 random scattering computations. By using a fixed N value,

Carin’s research proved that it is possible to provide a sufficiently accurate solution with a non-

scaling runtime. The DCT algorithm for in situ compressive sensing is highly specific for a

23

computational electromagnetics application. This makes it perfectly tailored for reduced

runtimes of our problem of interest: RCS. [9]

Chapter 5

Fortran-Based DCT Implementation Testing

This chapter describes my initial implementation of the DCT method written in Fortran.

Fortran was chosen as the implementation language because it matched the language in which

the electromagnetics solver was written. I obtained a non-commercial FMM solver for the

purposes of this study in order to have access to the source code and directly incorporate the

compressive sensing theory. Throughout this chapter the results of both accuracy and efficiency

testing of this implementation are outlined and analyzed.

5.1 Accuracy Testing

The focus of my research was not the accuracy of compressive sensing methods of

computation, but rather the runtime efficiency. However, this section gives a brief proof of the

accuracy which is well supported by the published literature and other implementations of

similar compressive sensing methods.

24

5.1.1 Theoretical Accuracy

In Situ Compressive Sensing, published by Carin’s team, outlines the detailed theoretical

analysis of the accuracy of the DCT method. Below is a summary of that analysis.

Two basis functions were chosen for testing, a discrete cosine function and the more

traditional Haar function. Calculations were run in free space and within the waveguide.

Because the data of the signal is significantly sparser in the DCT basis than in the Haar basis,

DCT only required 6 nonzero coefficients while the Haar transform required 30. In the in situ

compressive sensing method, n receiver positions and associated frequencies are randomly

selected. Therefore, the fractional error of the calculation is a function of n. Figure 1 below,

from the cited paper above, shows the error for both free space and waveguide calculations of the

Haar basis function. Figure 2 shows the same error calculations but for a discrete cosine

function method. As the figures show, the marginal error of the discrete cosine function is much

less and more consistent than the Haar function. This data proves that the DCT method is an

accurate compressive sensing method in theory and out-performs the more traditional Haar basis

function. [4]

25

The proof above demonstrated that the DCT algorithm is an accurate CS method, but I

wanted to be sure that it was also an accurate computational electromagnetics method. To test

the accuracy of this new algorithm in a practical setting, I created an experiment comparing a

stand-alone, DCT aided, computational electromagnetics solver and the standard commercial

software known as FEKO. In order to be a valuable asset to industry, the DCT method must not

only prove accurate in theory, it must remain acceptably accurate in practice.

5.1.2 Practical Accuracy

In this section I complement the theoretical proof of accuracy described above with an

initial implementation of the DCT method and subsequent testing in order to prove practical

accuracy. This initial implementation was coded in Fortran and worked in parallel with a basic

Fast Multipole Method (FMM) solver. The Fortran software was run with the Absoft compiler.

These software choices were made in order to best duplicate the initial implementation

completed by Carin’s team in the hopes of replicating their accuracy.

Figure 2: Haar Function Figure 3: Discrete Cosine Function

26

Once the code was completed as outlined by Carin’s research and discussed in detail in

chapter 4, I conducted tests using a practical and standard problem similar to those faced in

industry. Figure 1, in section 3.1, shows the image of the mesh representation of an airplane

model known as the VFY218. This model airplane is used as a stand-in for most complex EM

modeling problems that involve aerial vehicle simulations. This is because the model contains a

fair amount of complexity while remaining generic enough to represent many different military

planes. In addition, this model contains no confidential information and is a publically-

releasable file. This made the act of acquiring the model much simpler than an exact replica of a

specific plane.

I ran multiple RCS simulations for the VFY218, all with frequencies ranging from 50 to

400 MHz. Identical simulation setups were run for the Fortran DCT implementation and the

commercial FEKO software described in chapter 3. Figure 4 below shows the RCS graph for the

VFY218 at 200 MHz. As can be observed from this figure, the Fortran implementation of the

DCT method produces an RCS graph that is almost identical to the results produced by the

FEKO software. Similar results were found for each calculation at each frequency.

-2.00E+01

-1.00E+01

0.00E+00

1.00E+01

2.00E+01

3.00E+01

4.00E+01

0.00E+00 1.00E+02 2.00E+02 3.00E+02 4.00E+02

Fa
rf

ie
ld

 R
C

S
(D

b
)

Angle Phi (deg)

VFY218 RCS Graph (200 Mhz)

FEKO

Fortran DCT

27

The true interest of this research does not lie in the accuracy of the DCT computation.

We have proven both theoretically and in practice that compressive sensing does yield

acceptably accurate results. The topic of interest for this study is the reduction in runtime.

Carin’s team reveal potential for drastic time reducing capabilities with the use of compressive

sensing theory. The remainder of this thesis will focus on my efforts to make that potential for

faster computation a reality.

5.2 Efficiency Testing

It was already believed, and has now been confirmed, that the DCT method is an accurate

approximation for EM modeling and simulations. Therefore, I focused my research on the

increase of runtime efficiency that can be obtained by using compressive sensing.

5.2.1 Phase 1: Cylinder

I designed two series of tests to accurately depict the efficiency of the DCT method. The

first stage was based around a simple cylinder model which can be seen in Figure 5. The RCS

graph was generated with both the Fortran implementation of the DCT method using an FMM

electromagnetics solver. The control RCS was generated using the FEKO software solver based

on the MLFMM method known for its efficiency. The simulation was run with frequencies

ranging from moderate to high frequencies between 400 MHz and 1 GHz. This frequency range

was chosen because it accurately represents the frequency range most often used in practical

modeling and simulation problems.

28

The graph in Figure 6 below shows the trend line for the runtime of the Fortran-based

DCT method and the traditional FEKO simulation. As you can see, the results are not consistent.

The DCT method only outperforms the FEKO software at one frequency. At all other

frequencies it is less efficient. In order to see if these results were consistent with another test

case, I ran a similar RCS simulation on the VFY218 plane model.

Figure 6: Fortan-Based DCT - Cylinder Runtime

Figure 5: Cylinder Mesh Model

29

5.2.2 Phase 2: VFY218

Because compressive sensing is used to simplify very complex problems, I ran an

efficiency test on a model that is more complex than a simple cylinder. The VFY218 has much

more complexity and should therefore benefit more from the DCT optimization. Again, RCS

simulations were run on both the Fortran DCT implementation and the FEKO software. This

VFY218 model has a course mesh and therefore was not compatible with the frequency range

that was previously used on the cylinder model. Therefore, the frequency range for this test was

reduced to values within the range of 100 to 400 MHz.

The graph in Figure 7 below shows the trend line for the runtime for the same

comparison between the DCT implementation and the FEKO software, but this time with the

VFY218 model. The results in this case are much more reassuring and consistent. The DCT

implementation easily reduces the computation time of the RCS simulation by fifty percent for

most frequencies. However, the data, which can be found in Appendix A.1, shows that at the

lowest frequency of 100 MHz, the DCT implementation takes twice as long as the FEKO

software.

30

5.3 Analysis and Conclusions

The results of the two tests described above have interesting implications. I observed that

at low frequencies and with simple cases, the FEKO software runs faster than the DCT

implementation. However, once the simulations became more complex with high frequencies,

the DCT method was able to reduce the runtime of the traditional simulation by about fifty

percent. While this is a significant reduction in time, it is not the great potential that is believed

can be achieved through the use of compressive sensing.

I believe that there are several reasons as to why the simulations did not demonstrate the

full capabilities of the DCT method and the compressive sensing theory. Firstly, the Fortran

DCT implementation used an FMM electromagnetics solver whereas the FEKO software uses an

MLFMM solver. As briefly discussed in chapter 3, MLFMM improves upon the more simplistic

Figure 7: Fortran-Based DCT - VFY218 Runtime

31

FMM and is able to speed up runtimes. Secondly, the FEKO software is commercial quality and

highly optimized. The FMM solver that I obtained is not as efficient and not up to par with a

commercial-grade solver. FMM solvers of any kind are extremely tricky and difficult to

implement. The benefit of using a commercial solver of any brand, like FEKO, is that the

company specializes in implementing and optimizing such numerical analysis methods. FEKO

is one of the leading creators of integral solvers and therefore has top-of-the-line efficiency

quality. I believe that the lack of substantial time reduction was due to the use of FMM rather

than MLFMM and using a home-grown rather than a commercial solver. [12]

These unforeseen disadvantages with my initial implementation prompted my

investigation into an integration method. It would be beneficial to industry if users could harness

the powers of both the DCT method and the optimized FEKO solver. Therefore, in the rest of

this thesis I discuss a new DCT implementation. This implementation was created as an overlay

to the FEKO solver that could work symbiotically with the optimized FEKO MLFMM method.

Chapter 6

FEKO-DCT Integration

In order to overcome the runtime challenges which were discovered in the previous

chapter, I have proposed a new solution for implementing the DCT method. This method

involves integrating compressive sensing with the commercial FEKO solver. This will allow the

user to benefit from the runtime efficiency of both methods.

32

Since FEKO is a commercial solver, I am unable to gain access to the FEKO solver’s

source code. Therefore, in order for a successful integration, the FEKO solver will be treated as

a black box and the DCT software will act as a wrapper. One of the benefits of using the FEKO

platform, as opposed to any other electromagnetic software, is the way in which the FEKO suite

communicates internally. The FEKO software platform is a suite of four components. The

components communicate with one another using text files which can be easily manipulated and

manually fed to one another as necessary. This method of communication is essential to the

success of this implementation.

6.1 How FEKO Works

The following section outlines the internal communication protocol between the four

independent components of the FEKO software suite. This protocol is important to understand

for the implementation of the integration software. The FEKO suite’s four components are as

follows: editFEKO, cadFEKO, FEKO solver, and postFEKO. Each of these components has its

own role in the modeling and simulation process.

There are three stages to any traditional modeling and simulation problem. First the user

defines the problem. Second, a solver runs a numerical analysis method to gain a solution.

Finally, the user can view those solutions as graphs and data. These three stages each correspond

to a different FEKO suite component. During the first stage the user has two options for defining

the problem. Either he can use the cadFEKO graphical interface or he can use the editFEKO

text-based interface. The cadFEKO component allows a user to create geometric and mesh

models in a CAD-like program. In addition, any other problem-defining settings can be created

33

within this interface. Once the user is finished defining the problem, the cadFEKO program

creates the necessary files to continue the simulation process. These files include a geometry file

that describes the model, a mesh file that describes the mesh, and a FEKO-unique .pre file. The

.pre file is essentially a text file that outlines the parameters of the problem for the second stage

solver to interpret. The second component that can be used to complete the first stage of the

modeling and simulation process is editFEKO. If the user is well-versed in the internal syntax of

the FEKO suite, he can write a .pre file from scratch. Then, all the user needs to do is create a

compatible geometry and mesh file in any other CAD software program of his choice.

The second stage of the modeling and simulation process is the solution solving stage.

This is where FEKO offers the user its greatest advantage. The FEKO solver is the component

that is most desirable for runtime efficiency and it is the reason I am creating an integrated,

compressive sensing software platform. The FEKO solver is the only component that has no

graphical user interface. It can be triggered using the cadFEKO or editFEKO interfaces, or

alternatively through the Windows or Linux command prompts. The FEKO solver interprets the

information contained in the .pre file and generates a solution using any one of its CEM analysis

methods which were described in chapter 3. All the solution information is written to an output

text file that, similar to the .pre file, has its own unique syntactical formatting.

The final stage of the modeling and simulation process is the post processing

interpretation of the solution found in the second stage. PostFEKO allows the user the view the

output data stored in the output file and creates desirable graphics displaying information such as

the RCS of a particular model. In order to incorporate compressive sensing into the FEKO suite,

the DCT software will act as a wrapper around the FEKO solver component and manually read

and write text files.

34

6.2 High-Level Implementation Description

This section explains how the integration software works on a high level. In Figure 8

below, the different colors of the boxes represent the different software platforms that the

simulation data is being manipulated with during that stage of the process. The white boxes

represent flexible interfaces. This means the user can use any software platform he prefers,

including the FEKO suite components. The blue boxes represent the use of my own Java-based

DCT implementation which will be explained in greater detail in the next section. The green box

represents the use of the FEKO solver. The stages of a modeling and simulation problem which

were described in the previous section are labeled in Figure 8. As the schematic shows, the DCT

manipulation software wraps around phase 2.

The transitions between boxes represent the passage of information. Black arrows

represent manual transitions whereas blue arrows represent automatic transitions that are

unknown to the user. Transitioning between the colored boxes is entirely automated to make the

compressive sensing software as simple to use as the original FEKO solver. The information

passed between each stage is contained in text files as described in the previous section.

Transition 1 passes .pre files to the DCT wrapper software. Transition 2 passes those same .pre

files to the MLFMM solver after the DCT manipulation has been applied to the plane wave.

EM

Problem

MLFMM

Solver
DCT

Inverse

DCT

RCS

Graph

1 2 3 4

Stage 1 Stage 2 Stage 3

Figure 8: High-Level Implementation Schematic

35

Transition 3 passes output files to the back end of the wrapper software. Finally, transition 4

passes those same output files to a graphical interface after the inverse DCT manipulation has

been applied to the solution data.

6.3 In-Depth Implementation Description

This section will delve deeper into the two stage DCT software wrapper that is portrayed in

blue in Figure 8. As suggested by the schematic in Figure 8, the DCT wrapper software has two

components: a front end and a back end. The front end completes all the pre-processing

manipulations to the .pre text files prior to running the FEKO solver. The back end completes all

the post-processing manipulations to the output text files after the solver has computed a

solution.

6.3.1 Front-End

Figure 9 below displays a schematic representation for the front-end DCT software

implementation. The entire DCT wrapper software was written in Java and compiled within the

Eclipse environment. In the schematic below each box corresponds to a different file and the

arrows represent the passage of information.

36

The purpose of the front-end files is to edit the text-based .pre file created by the user and

replace the conventional plane waves with those that adhere to the DCT method as described in

chapter 4. The first stage of the front-end implantation is the user input prompt. This file

generates a simple, text-based input prompt that asks the user for some initial information about

the electromagnetics problem. It is at this stage that the user specifies the name of the .pre file

that was generate prior to running the DCT code as well as the directory in which the .pre file,

mesh file, and geometry file are held. In addition, the FEKO solver needs to know how many

processors are available for computation use since it has parallel processing capabilities. Finally,

the DCT manipulation software needs the user to specify the number of realizations (k) and the

number of incident angles (N) for the problem. These variables correspond to the variables

defined in the mathematical formulas for DCT in chapter 4.

After the user has input the necessary information, the DCT software can begin

processing and manipulating the .pre file. This involves the generation of new plane waves

User

Input

Prompt

GenCoeffs

EditFile

GenWaves

GenFiles

Figure 9: Front-End DCT Implementation Schematic

37

according to the DCT mathematical specifications. EditFile is the second stage of this process.

This file reads and writes to the .pre file. I order to gather the new information that will be

written to the new .pre file, editFile must communicate with some of the other files in the

program. In Figure 9 arrows represent the passage of information from genCoeffs and

genWaves to editFile.

The genCoeffs file is responsible for all the mathematical computations necessary for the

front-end half of the DCT algorithm. GenCoeffs generates new DCT plane wave coefficients

which are calculated according to the mathematical formulas described in chapter 4. These

coefficients are used by the genWaves files to generate a set of plane waves formatted to comply

with the .pre text file syntax. Once these waves have been created, they are passed onto editFile

to be written into the .pre file specified by the user.

The final stage of the front-end DCT software is completed in genFiles. This file creates

all the necessary files needed to run the FEKO solver in the next stage of computation. Two

kinds of files are created in genFiles. First, a certain number of .pre files are generated, each

containing the correct DCT coefficient plane waves. The number of .pre files created is the same

as the number of realizations (k) specified by the user in the input prompt. This particular

program was run on a windows workstation and therefore, the second file created by genFiles is

a batch file. The batch file is triggered at the end of the front-end routine and begins running the

FEKO solver automatically for each .pre file that was generated.

38

6.3.2 Back-End

Figure 10 below displays the complementary schematic representation for the back-end

DCT software implementation. Just as in the front-end schematic, each box represents a

different file of the program. Again, all programs were written in Java to remain consistent with

the front-end implementation.

The back-end software is more complex than the front-end software. These files interpret

the solution data provided in the output files, reconstruct the solution through inverse discrete

cosine transform, and output the RCS graph and data for the user. The first phase of the back-

end implementation is to parse each of the k output files generated after the k .pre files were run

through the FEKO solver. The output information that is relevant for our calculation is held

within the last hundred lines of the output file. Because each output file is hundreds of thousands

of lines long, it is time efficient to parse the file from the bottom up. The parseHelper file

enables this capability. ParseHelper aids parseFiles by parsing the output file line by line starting

at the end of the file and working towards the beginning. After parseHelper sends parseFiles

each line of the output file, parseFiles extracts the solution data pertaining to the RCS calculation

Parse

Files

Parse

Data

Parse

Helper

Create

Graph

Figure 10: Back-End DCT Implementation Schematic

39

for the problem as well as important computation information such as peak memory usage and

total runtime.

The important solution data held in the output file is the e-theta value. The e-theta values

represent the scattered electric field strength in the far field at angle interval values surrounding

the model. ParseData takes each line of the output file that contains the e-theta value and parses

out only the numerical characters of interest. After this e-theta numerical data has been

extracted, the real and imaginary parts are computed and placed in a kxN matrix where k refers

to the number of realizations and N refers to the number of angles. These values were specified

by the user in the front-end. This process is repeated for each output file and the inverse DCT

function is applied.

The last phase of the back-end implementation is the computation of the RCS graph

given the parsed and reconstructed output data. The createGraph file creates an RCS graph and

displays both the graph and the RCS data for the user’s use in a post-processing interface of

choice later. In addition to the RCS data, the outputted graph displays the total runtime of the

FEKO solver and the peak memory usage during runtime.

Chapter 7

Runtime Efficiency of FEKO-DCT Integration

The previous chapter described a new implementation of the DCT algorithm.

Compressive sensing was integrated into the FEKO solver in order to harness the benefits of the

40

commercially optimized MLFMM method. In order to test that my new implementation scheme

was runtime-efficient I performed two series of test simulations. The tests performed on the new

implementation are identical to those performed for the runtime testing of my initial Fortran

implementation which can be reviewed in section 5.2.

7.1 Phase 1: Cylinder

For the first phase of the DCT integration testing, a simple simulation case was

conducted. As previously described in section 5.2.1, a simple cylinder was modeled and the

RCS was calculated using both the conventional FEKO software platform and the new

implementation of DCT using the FEKO solver component. Figure 11 shows the trend line for

simulations run at frequencies within the range of 400 MHz and 1 GHz at intervals of 200 MHz.

These frequencies represent a common range of problems often encountered in practical

modeling and simulation scenarios.

Figure 11: FEKO-DCT Integration - Cylinder Runtime

41

As the figure above shows, this new implementation of the DCT method had much more

consistent results than the initial Fortran implementation. At the highest frequency of 1 GHz, the

DCT implementation was able to reduce the runtime of the MLFMM solver from one hundred

and five minutes to fifty-five minutes. At the three higher frequencies we encounter consistent

results showing that the DCT method can reduce the runtime of the MLFMM solver by a factor

of two. A complete summary of all the data from this table can be found in Appendix A.2. This

data shows great improvement over the first implementation, but unfortunately a factor of two in

speed-up time is a much smaller reduction than suggested by the compressive sensing literature.

While the DCT method was able to decrease the runtime of the simulation at the three

highest frequencies, we find inconsistencies with the method’s runtime when it comes to the

lowest frequency. At 400 MHz the DCT method actually increased the runtime from twelve and

a half minutes to almost fifty-three minutes. Despite the increased consistency of our data for

the new implementation, it appears that the DCT method does not increase the efficiency of the

MLFMM solver at low frequencies. Section 7.3 will discuss the possible reasons for

inconsistencies to exist.

7.2 Phase 2: VFY218

Because the first phase of testing results suggested that the second implementation of the

DCT method was more successful than the first, I believed that the second phase would result in

even greater success. The efficiency testing of the first implementation proved that the DCT

method was most effective at reducing computation time for simulations of complex models at

42

high frequencies. Therefore, the second phase of the DCT integration was conducted with the

same VFY218 model used in the previous implementation’s second phase efficiency testing.

Figure 12 below displays the data results for the runtime of RCS computations of the

VFY218 model. These tests were run with frequencies in the range of 100 MHz to 400 MHz at

intervals of 100 MHz. Again, this test was identical to the one conducted for the efficiency tests

of the first DCT implementation as outlined in section 5.2.2.

The data results above show staggering results from the new implementation of the DCT

method. The graph shows that the runtime of the simulation increases linearly with frequency

using only the FEKO software suite. However, when the DCT method is incorporated, the

runtime remains fairly constant for all frequencies within the range of this test. While the

runtime does increase slightly between 200 and 400 MHz, the increase is minimal compared to

Figure 12: FEKO-DCT Integration - VFY218 Runtime

43

the runtime increase seen with the FEKO suite alone. As described in section 4.3, having a

constant value for N can keep the runtime of EM problems relatively constant as complexity

increases. I am reducing part of the EM problem from a linear runtime to a constant runtime.

The other components of the EM simulation process, such as pre-processing, are the causes of

the small increases in runtime as frequency increases. A complete summary of all the data found

in the chart above can be found in Appendix A.2.

As seen in Figure 11 above, the FEKO suite takes almost seven days to complete a

VFY218 simulation at 400 MHz. Using my DCT integration implementation, the runtime for the

exact same simulation was reduced to a mere eight hours. Similarly, at 300 MHz, the FEKO

suite spent over four days computing a solution whereas my DCT integration implementation

took less than five hours. These test cases show a consistent runtime reduction of almost two

orders of magnitude for the three highest frequencies in this test. These results are even greater

than suggested in the compressive sensing literature. These tests prove that the DCT

compressive sensing method is a successful and accurate way of drastically reducing the

computation runtime of electromagnetic simulations.

However, despite the staggering runtime reductions for the three highest frequencies in

the graph above, these tests again show an increase in runtime for the lowest frequency when

using the DCT method. The next section discusses the possible reasons why such results occur.

7.3 Analysis and Conclusions

The test results shown above prove that my new compressive sensing implementation,

which integrates the DCT method with the FEKO MLFMM solver, can drastically reduce

44

computation runtime for electromagnetic problems. These results are very promising for the

future of compressive sensing and its applications in computational electromagnetics. Reducing

computation time by two orders of magnitude is greater than could have been imagined from

simple theory. However, despite these grand results, it is evident from the data that compressive

sensing has its drawbacks for certain classes of problems.

The tests described in the previous two sections show an inconsistency in the runtime

efficiency at extremely low frequencies. Traditionally, CEM problems have a longer runtime if

they are run at higher frequencies because the problem becomes more complex. The MLFMM

solver, which is used in the FEKO suite, is highly optimized for low frequency cases since they

are so simplistic. After viewing these results, it was clear that my integration implementation

had a drawback that resulted in greater runtime for these simpler cases.

The FEKO solver takes a certain amount of time at the beginning of any simulation to

set-up the problem. This involves processing the mesh model, solving a pre-conditioner, and

computing various other values which can be stored for later use. After the initial set-up is

complete the iterative solver begins the process of converging upon a solution for each angle of

the farfield calculation. The number of angles can be very large and contain redundant

information. The large amount of data that needs to be processed for such calculations is the

reason why compressive sensing theory was developed for computational electromagnetics

initially.

 In the case of the DCT algorithm, only k iterative solutions need to converge in order for

a farfield solution to be calculated. As was described in chapters 4 and 6, k realizations become

k separate .pre files. Because I did not have access to the FEKO solver’s source code, I was

45

forced to manually feed the solver each of the k .pre files individually rather than run them

concurrently as is done when the entire FEKO suite is utilized. This meant that I had to start the

FEKO solver k separate times and therefore repeat the set-up process k times when the

traditional FEKO method only needed to compute the set-up data once. This redundant

computation at set-up time makes the simpler simulations less efficient when run using the DCT

integration implementation.

The interesting aspect of the DCT integration implementation is that the savings it brings

to the iterative solver aspect of the MLFMM method soon outweighs the additional overhead set-

up costs. It becomes apparent that the most time-consuming aspect of any fairly complex

simulations is the iterative process of converging upon a solution for each angle. This means

that the DCT method will almost always reduce the runtime cost despite the redundancy of the

set-up calculations.

Chapter 8

Future Advancements in Compressive Sensing

My second DCT implementation which incorporated the FEKO MLFMM solver was

extremely successful in reducing the runtime costs of electromagnetic modeling problems.

However, there are many improvements that can be made to this software in the future in order

to further decrease the runtime and make it industry-friendly.

46

 As the software stands at the moment it has a non-inconsequential flaw which makes it

less robust than required for widespread use within the EM modeling industry. Any low

frequencies or for simple models, my implementation that incorporates the DCT method will

actually have a greater runtime than simply using the conventional FEKO suite. This means that

my program has inconsistent results and will not be an acceptable industry standard. There are

two possible solutions to this problem that could result in a more successful, consistent and

complete software platform.

 First, I want to investigate the development of my own MLFMM solver. This numerical

analysis method appears to be the solver-of-choice for RCS computation problems and is

extremely efficient at finding a solution. The development of my own MLFMM solver would

enable the direct integration of the DCT algorithm rather than building a wrapper function that

resulted in unnecessary redundancy as described in the previous chapter. This MLFMM solver

would have to be equally as optimized as the FEKO solver. While creating my own MLFMM

solver is an attractive solution in theory, I have many reservations about attempting to create

such a complex piece of software. The MLFMM method is extremely complex and it could take

years to develop something that works even half as well as the FEKO MLFMM solver. In

addition, our users would then be confined to using the MLFMM method when other

computational electromagnetic problems may benefit more from the Method of Moments of Fast

Multipole Method techniques. My overall goal is to decrease runtime but not at the expense of

computation flexibility. Therefore, I do not believe that creating my own MLFMM solver is the

best solution for creating a consistent and successful compressive sensing-aided CEM solver.

 The second possible solution to improving my DCT integration software is to make my

software more intelligent. Rather than always using the DCT method, an intelligent

47

implementation would choose a solver method best suited to the problem at hand. This software

would choose the solver method for the problem by assessing different complexity aspects of the

model. These aspects would include the frequency, the size and complexity of the geometry

model, the number of elements in the mesh model, and the complexity of the user-requested

solution. The software could then choose between any of the FEKO solver types and then

choose whether or not to incorporate the DCT method as a wrapper to that particular solver.

This intelligent software could be extremely efficient and consistent in its runtime and accuracy:

the beginnings of a new industry standard.

FEKO and most other commercial software companies are now venturing into the

domain of graphical processing units (GPUs) for increased runtime efficiency for their numerical

analysis methods. GPUs offer a completely different architecture than traditional CPUs upon

which to build a computational electromagnetics solver, such as MLFMM. GPUs are inherently

structured with enormous parallel-processing capabilities on a single machine. The future of

electromagnetic computation lies in the potential of GPU software. I believe that the best future

advancement for runtime efficiency is to investigate implementation of compressive sensing in a

GPU-specific language. In order for this technology to be effective, a commercial-quality CEM

solver must be implemented first. This technology is currently being developed by companies

such as FEKO. [7] Until this new technology is well accepted in the industry, compressive

sensing integration will remain on-hold.

As discussed in this section, there remain numerous future advancements in the field of

compressive sensing as applied to computational electromagnetic simulations. There is great

potential to improve upon the software developed as a result of my current research. In addition,

new research in the field of GPU technology holds a myriad of possibilities for simulation

48

runtime reduction. My research has simply scratched the surface of the great potential that lies

in compressive sensing and the possibilities for better runtime efficiency.

Chapter 9

Contributions

The theoretical benefits of compressive sensing algorithms have been understood and

well-researched for decades. Unfortunately, that theory has yet to be incorporated into practice

for problems in the field of computational electromagnetics. Throughout the course of my

research I have made two important contributions to the theoretical and practical study of

compressive sensing. Firstly, I have identified and implemented a specific compressive sensing

algorithm well-suited for application in computational electromagnetics. This implementation

proved that the DCT method was both a practically valid and relatively efficient method of

compressive sensing. More importantly, my research proved that this method was also both a

valid and effective method of electromagnetic modeling.

The second and most significant contribution of my research is the integration of the

DCT compressive sensing method with the commercial FEKO solver software. This integration

proved beyond a doubt that the DCT algorithm can change the way current electromagnetic

modeling systems work. Reducing simulation runtime by two orders of magnitude dwarfed all

predictions about the benefits of compressive sensing. Through my creative integration method,

I was able to show how effective compressive sensing can be in a practical, industry setting. I

49

also proved that integration creates no additional complexity cost since my software was as

simple for the user as the traditional FEKO suite components. The research in this thesis is

simply the beginning of my journey to explore the possibilities of compressive sensing and to

change the way industry computation systems are created. These two major contributions

highlight the great potential that lies ahead.

50

Appendix A

A.1: Runtime Data for Fortran-Based DCT Implementation

Computation Method Frequency (MHz) Runtime (Hrs)

FEKO 400 0.208

FEKO 600 1.257

FEKO 800 1.58

FEKO 1000 1.758

Fortran-Based DCT 400 1.617

Fortran-Based DCT 600 0.952

Fortran-Based DCT 800 2.019

Fortran-Based DCT 1000 3.176

FEKO-DCT 400 0.883

FEKO-DCT 600 0.687

FEKO-DCT 800 0.67

FEKO-DCT 1000 0.927

51

A.2: Runtime Data for FEKO-DCT Implementation

Computation Method Frequency (MHz) Runtime (Hrs)

FEKO 100 1.187

FEKO 200 38.537

FEKO 300 96.462

FEKO 400 164.801

Fortran-Based DCT 100 2.272

Fortran-Based DCT 200 12.629

Fortran-Based DCT 300 27.147

Fortran-Based DCT 400 68.56

FEKO-DCT 100 6.31

FEKO-DCT 200 0.731

FEKO-DCT 300 4.856

FEKO-DCT 400 8.664

52

Bibliography

[1] Baraniuk, Richard G., Volkan Cevher, Marco F. Duarte, and Chinmay Hegde. "Model Based

Compressive Sensing." Rice University. Web.

<http://www.ece.rice.edu/~vc3/model_based_CS.pdf>.

[2] Baron, Dror, Marco F. Duarte, Michael B. Wakin, Shriram Sarvotham, and Richard G.

Baraniuk. "Distributed Compressive Sensing." Distributed Compressive Sensing. Israeli

Institute of Technology, 2008. Web.

<http://arxiv.org/PS_cache/arxiv/pdf/0901/0901.3403v1.pdf>.

[3] Candes, E.J., J. Romberg, and T. Tao. "Robust Uncertainty Principles: Exact Signal

Reconstruction from Highly Incomplete Frequency Information." IEEE Transactions on

Information Theory 52.2 (2006): 489-509. Print.

[4] Carin, Lawrence, Dehong Liu, and Bin Guo. "In Situ Compressive Sensing." IOP Science:

Inverse Problems. IOP Science, 2008. Web. <http://iopscience.iop.org/0266-

5611/24/1/015023/pdf/0266-5611_24_1_015023.pdf>.

[5] Carin, Lawrence, Dehong Liu, Wenbin Lin, and Bin Guo. "Compressive Sensing for Multi-

static Scattering Analysis." Journal of Computational Physics 228.9 (2009): 3464-477. Print.

[6] Donoho, D.L. "Compressed Sensing." IEEE Transactions on Information Theory 52.4

(2006): 1289-306. Print.

[7] "GPU Acceleration of Electromagnetic Solutions in FEKO." FEKO - EM Simulation

Software. FEKO, Dec. 2009. Web. <http://www.feko.info/about-us/News/gpu-acceleration-

of-electromagnetic-solutions-in-feko>.

[8] Ji, Shihao, Ya Xue, and Lawrence Carin. "Bayesian Compressive Sensing." IEEE

Transactions on Signal Processing 56.6 (2008): 2346-356. Print.

[9] Mesecher, Dave, Larry Carin, Ron Pirich, and Ivan Kadar. "Exploiting Signal Sparseness for

Reduced-Rate Sampling." IEEE, May 2009. Web.

<http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=05031567>.

[10] "Multi-Level Fast Multipole Method." FEKO - EM Simulation Software. FEKO. Web.

<http://www.feko.info/product-detail/numerical_methods/mlfmm>.

[11] "Numerical Methods — FEKO." FEKO - EM Simulation Software. Web.

<http://www.feko.info/product-detail/numerical_methods/numerical-methods>.

[12] "Overview of FEKO — FEKO." FEKO - EM Simulation Software. Web.

<http://www.feko.info/product-detail/overview-of-feko/overview-of-feko>.

53

[13] Rao, S. M., and N. Balakrishnan. "Computational Electromagnetics – A Review." Indian

Institute of Science. Web. <http://www.iisc.ernet.in/~currsci/nov25/articles24.htm>.

